在数学领域,集合的元素(英语:element)指构成该集合的任意对象,也可以称作成员(英语:member)。
集合
表示集合中有四个元素,分别是数字1、2、3、4。由集合中元素组成的集合是的子集,例如 。
集合本身也可以是元素。例如,集合的元素不是1、2、3、4四个数,而是数字1、2和集合这三个元素。
集合的元素还可以是任何东西。例如,集合的元素为red、green和blue。
符号和术语
符号“∈”表示“是中的元素”的关系,这种关系也称集合隶属关系(英语:set membership)。可以用
表示“是中的元素”,也可以表达为“是的成员”、“在中”或“属于”。
有时也用“包含”表达集合隶属关系,但因为这样的说法也可以用来表达“是的子集”,应该谨慎使用,避免歧义。[1][2]不过使用符号时没有歧义,可以用
来表达“包含”。
不隶属的关系可以用符号“”表示,记作
意思是“不是的元素”。
符号∈最早见于朱塞佩·皮亚诺1889年的论文Arithmetices principia, nova methodo exposita。[3]他在第 X 页[注 1]上写道:
Signum ∈ significat est. Ita a ∈ b legitur a est quoddam b; …
意思是
符号 ∈ 表示“是”。所以a ∈ b被读作 a 是 b; …
该符号源自希腊字母“E”的小写“ϵ”,是单词ἐστί的第一个字母,意思为“是”。[3]
字符 | ∈ | ∉ | ∋ | ∌ | ||||
---|---|---|---|---|---|---|---|---|
Unicode名称 | Element of | Not an element of | Contains as member | Does not contain as member | ||||
编码 | 十进制 | 十六进制 | 十进制 | 十六进制 | 十进制 | 十六进制 | 十进制 | 十六进制 |
Unicode | 2208 | U+2208 | 2209 | U+2209 | 2211 | U+220B | 2212 | U+220C |
UTF-8 | 226 136 136 | E2 88 88 | 226 136 137 | E2 88 89 | 226 136 139 | E2 88 8B | 226 136 140 | E2 88 8C |
UTF-16 | 8712 | 2208 | 8713 | 2209 | 8715 | 220B | 8716 | 220C |
字符值引用 | ∈ | ∈ | ∉ | ∉ | ∋ | ∋ | ∌ | ∌ |
字符值引用 | ∈ | ∉ | ∋ | |||||
LaTeX | \in | \notin | \ni | \not\ni or \notni | ||||
Wolfram Mathematica | \[Element] | \[NotElement] | \[ReverseElement] | \[NotReverseElement] |
集合的势
参见
注释
参考资料
延伸阅读
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.